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Gradient Hydroxyapatite Chromatography with
Small Sample Loads. lil. Fundamental Differential
Equation for Gradient Chromatography

TSUTOMU KAWASAKI

LABORATOIRE DE GENETIQUE MOLECULAIRE
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE
FACULTE DES SCIENCES

PARIS 5, FRANCE

Abstract

In contrast to stepwise chromatography, with gradient chromatography, it is
impossible in principle for a chromatographic process to be described on the basis of a
continuity equation for the actual molecular flux occurring on the column itself. It is
the abstract molecular flux occurring on the molarity gradient of competing ions that
is fundamental. From this point of view it is not the column but rather the molarity
gradient of the ions that is fixed; both the sample molecules and the “‘gradient” which
is defined as an assembly of longitudinal positions on the column migrate on the
molarity gradient. A continuity equation for the abstract flux is proposed. It is
confirmed that the theoretical chromatogram obtained in an earlier paper is a solution
of this equation.

INTRODUCTION

When dealing with hydroxyapatite (HA) chromatography, the sample
initially adsorbed at the top of the column forming a narrow band is eluted
from the column by increasing the molarity of competing ions of the buffered
solvent stepwise or gradually. The molecular elution is carried out by
competition with particular ions from the buffer for adsorbing sites on the HA
crystal surfaces (I). A linear molarity gradient is often applied.

Due to the additive property of flux, it can be stated in general that the
longitudinal diffusion in the column is contributed from two types of
diffusion: (1) diffusion due to heterogeneity in the flow rate of the solution
within a vertical section of the column. Without investigating the hydro-
dynamic mechanism, it can simply be assumed that heterogeneity in the flow
rate occurs due to heterogeneity in the interspaces among HA crystals
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packed in the column. (2) Thermodynamic diffusion; this is defined in this
paper (and in Ref. 1) as any diffusion occurring provided the flow rate of the
solution is homogeneous within any vertical section of the column. Now, with
gradient chromatography on HA columns, virtually no deformation of the
chromatogram nor the change in elution molarity occurs when the flow rate is
changed. An increase in the width of the chromatographic peak does occur,
however, with an increase in the column length when it is long enough,
demonstrating the existence of longitudinal molecular diffusion in the column
(7). These experimental facts can be explained by introducing the following
three assumptions. (a) The rate of increase in the width of the molecular band
due to thermodynamic diffusion is negligibly small in comparison with the
rate provoked by heterogeneity in the flow rate; the ratio of the rate of
increase in the band width due to heterogeneity in the flow rate to the mean
flow rate is constant. (b) Even concerning the longitudinal diffusion of
competing ions, the effect of thermodynamic diffusion is negligible in
comparison with the effect of diffusion due to heterogeneity in the flow rate;
this means that the longitudinal diffusion of both sample molecules and
competing ions occurs essentially in parallel in the column and is caused by
heterogeneity in the flow rate. (¢) The chromatographic process is virtually a
quasi-static process. Within any elementary volume in the column, thermo-
dynamic equilibrium is locally attained at any instant of the chromatographic
process (for details, see Ref. 7). As both Assumptions (a) and (b) are
necessary conditions for Assumption (c), we shall call the chromatographic
process occurring under all these assumptions a quasi-static process. Owing
to Assumptions (a) and (b), the chromatogram for molecules eluted out of a
column with length L can be calculated as concentration C of molecules in
the interstitial liquid at position L on the hypothetical column with an infinite
length. This is because these assumptions mean that the flows of sample
molecules and competing ions that proceed backward on the column are both
negligible (7).

In an eariier paper (1) a theory of linear gradient HA chromatography was
developed by using the following method. The column was divided into a
number of parallel hypothetical columns with diameters of the order of
magnitude of the interdistances among HA crystals being packed. The effect
of heterogeneity in the flow rate should be negligible in each microcolumn. A
distribution law of the flow among different microcolumns was assumed, and
the total chromatogram was represented as a sum of chromatograms for the
respective microcolumns. The equations representing the total chromato-
gram derived in Ref. I were confirmed experimentally (2). In Appendix Il in
Ref. 1, it was suggested that, with gradient chromatography, the chromato-
gram be given as a solution of the continuity equation for an abstract flux of
molecules migrating on the molarity gradient of competing ions, in constrast
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with the chromatogram in stepwise chromatography which is given as a
solution of the continuity equation for the actual flux of molecules migrating
on the column itself. In the present paper the abstract continuity equation is
explored. It is confirmed that the theoretical chromatogram obtained in Ref.
1 is a solution of this equation.

The theoretical conclusions reached in Ref. / are briefly summarized in
Appendix I of Ref. 2.

THEORETICAL

Actual Flux J and Abstract Flux J*

Let us consider an actual flow of molecules migrating on a column. For
each component of the sample mixture the amount of molecules should be
conserved, at any instant ¢, within a vertical section at a longitudinal position
L’ on the column following a continuity equation

di J+3Q 0 (1)
ivJ+—=
k ot

where ) represents the total density of molecules (of the component under
consideration) in the interstices, including the crystal surfaces of HA, of the
column sections. J is the corresponding flux. For convenience sake we
hereafter represent the position L' as a sum of interstitial volumes involved
between the column top and the position under consideration. L’ will simply
be called “distance” or “length.”

For each component of the mixture the ratio Ry of the mean migration rate
of molecules to the mean migration rate of the solvent at column position L’
should be equal to the ratio B of the amount of molecules in the interstitial
liquid (i.e., the mobile phase) to the total amount in the column section at that
position. This is a first principle of chromatography (3). B is independent of
the total amount of molecules in the column section if the amount of
molecules is small because, in this situation, the linear section of the
adsorption isotherm should be realized. With stepwise chromatography the
migration of molecules on the column can, in fact, be described by using Eq.
(1) (see Ref. 7, Appendix III).

With gradient chromatography, however, the value of B within a given
section of the column changes with time ¢ due to a change (with time ¢) in
molarity m of competing ions in the interstitial liquid in the same column
section; m increases and B also increases gradually. Therefore, if the total
amount of molecules in the column section is small, the increase in B with an
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increase in m should be carried out independently of the amount of molecules
(see above). It should be pointed out that in this situation, in principle, it is
impossible to describe causally the migration of molecules on the column by
using Eq. (1) (even though the conservation of the amount of molecules in a
column section can be represented by Eq. 1). This is because Eq. (1) gives a
causal relationship between flux J and density Q) (or the total amount of
molecules) in a given column section, whereas with gradient chromatography
the factor B, being involved in J, can be determined only by m independently
of Q) (see above). Even with gradient chromatography, however, the migra-
tion of molecules on the column should be describable by using a certain
continuity equation because a conservation of the amount of molecules
should still be predictable if the initial condition of chromatography is given.
This leads to a consideration that, besides flux J, a certain flux (denoted by
J*) should exist. This flux, as a constituent of the new continuity equation,
should play a fundamental role in gradient chromatography. In fact, what is
necessary is the existence of a fundamental flux. A priori, we have no reason
why it should be identical with the actual flux J.

The existence of flux J* can be suggested from another consideration and
the experimental confirmation thereof. Thus it can be considered that, in the
first stage of the development process in gradient chromatography, the
gradient of competing ions simply passes through the position of the band of
sample molecules adsorbed at the top of the column. When molarity m of the
ions attains some value at that position, the desorption of molecules would
begin and molecules would begin to migrate gradually. The migration rate
would increase, and it would approach the migration rate of the ions. This
rate should be virtually equal to the migration rate of the solvent (water) (cf.
Remark 1 below). In other words, the molarity of the ions at which the
molecular band appears should increase with time ¢. This suggests the
existence of flux J* migrating upward along the gradient of the ions (cf.
Remark 2 below). Experimentally, it can be observed that the elution
molarity of sample molecules increases, in general, with an increase in
column length (Figs. 1 and 2 in Ref. 4, which are partially reproduced in Fig.
Al in Appendix II of Ref. 2; cf. Remark 3 below). This demonstrates that the
molecular band, in fact, migrates upward along the gradient.

It can further be suggested that flux J* should fulfill the following
continuity equation:

di J*+6C 0 2
v, —_—=
where

C = B (3)
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represents the density or the concentration of molecules in the interstitial
liquid in a column section. The flux with density C, but not with density £,
has been suggested because density Q2 is concerned with molecules in both
the mobile and stationary phases whereas molarity m is an intensive
quantity. This represents the “force” that drives molecules out of the crystal
surface through a competition mechanism (see Appendices I and II of Ref.
1). The concept of the co-existence of two phases in the locale of a flux would
have a physical meaning only when the locale belongs in the actual extensive
space. When dealing with a flux with density C, the concept of the co-
existence of different phases does not appear. (The existence of the funda-
mental flux J* with density C in gradient chromatography can also be
suggested from a consideration made in Appendix II of Ref. 1) Proofs that
flux J* should fulfill Eq. (2) will be given in the sections entitled “Derivation
of Flux J from Flux J*,”” “Derivation of Flux J* from Flux J,” and “‘ General
Method of Finding the Fundamental Flux in Any Type of Chroma-
tography.” A general method of finding the fundamental flux for any type of
chromatography will be given in the last-mentioned section.

Remark 1. It can be observed experimentally that the slope of the
molarity gradient on a column is essentially equal to the slope that should
occur provided there is no adsorption of the ions on the crystal surfaces of
HA (see the Theoretical Section of Ref. 5). This means that, even though the
delay of the gradient occurs immediately after the gradient has been
introduced because of the adsorption of ions, any part of the gradient
migrates with the same rate after the initial delay on the column. This rate
should be equal to the rate realized, provided there is no adsorption of ions on
the crystal surfaces. Thus molarity m of the ions in the interstitial liquid or
the mobile phase on the column should be high enough, at least except at the
beginning of the gradient, for almost all ions in a column section to be in the
mobile phase (see the Theoretical Section of Ref. 5). Therefore m should be
virtually independent of the adsorption and desorption phenomena of sample
molecules in the column. This has been confirmed experimentally (4).

Remark 2. 1t can be considered that competing ions are locally distributed
within a column section (Introduction). It is therefore necessary to specify
the meaning of the molarity gradient. Thus we define m as the mean molarity
of the ions within a column section. The molarity gradient is defined as the
gradient obtained by connecting m values occurring within respective column
sections. This is linear in linear gradient chromatography (cf. the section
entitled ‘“Microscopical Point of View: Longitudinal Diffusion of Competing
Ions, the Form of Function B(s, m), and a Solution of Eq. (17)”.

Remark 3. In general, the larger the molecular dimensions the smaller is
the increase in elution molarity occurring with an increase in column length
(4). With a virus or large molecules of DNA the elution molarity is
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essentially independent of the column length (4, 6). Even in this case the
concept of flux J* is valid. It can be considered that molecules with extremely
large dimensions are completely adsorbed at the top of the column until the
ion molarity attains a critical value m°. When once this value is attained,
however, molecules are completely desorbed, so that the migration rate of the
molecules changes stepwise from zero to a rate that is equal to the migration
rate of the solvent or the competing ions (cf. Remark 1). This explains the
reason why the elution molarity is independent of the column length (cf. the
section entitled *“The Case of Molecules with Very Large Dimensions”).

Two Points of View on Gradient Chromatography

Here we specify the two points of view on gradient chromatography, the
first on which Eq. (1) is based and the second on which Eq. (2) is based. We
consider how the chromatogram C [which should be represented as a
function of m (or elution volume V') for a column of length L’] can be
related to the function C(¢, m) as a solution of Eq. (2). [It should be recalled
that the chromatogram of the molecules eluted out of a column with length L
or L' can be represented as concentration C of the molecules in the interstitial
liquid at longitudinal position L or L' on the hypothetical column with infinite
length (see Introduction).]

Figure 1 summarizes these two points of view, where the abscissa L' and
the ordinate m represent the general longitudinal column position and the
mean (see Remark 2 in the preceding section) molarity of competing ions,
respectively. The oblique straight line represents the linear molarity gradient
of the ions with a slope g’ occurring at time ¢. The slope g’ is defined as
positive in order for it to have a dimension of molarity/volume, representing
the increase in m from the bottom to the top of the column. g’ is independent
of time t. Ly' and my show the column position which exists at the beginning
of the gradient and the ion molarity at the top of the column, respectively. m;,
is the initial molarity of the ions introduced at the top (L' = 0) of the column
at time 0. This can be considered to be equal to the molarity at the beginning
(L' = Ly') of the gradient at time ¢. [It is common practice that the sample
dissolved in a buffer involving molarity m;, of competing ions is initially
loaded on the column; a narrow molecular band is formed at the top of the
column. The column is rinsed with a certain volume of the same buffer. In
this process the band usually stays at the same position. After rinsing, the
gradient with initial molarity m;, is applied; this instant is defined as time O.
It is possible that the linearity of the gradient is disturbed in the neighborhood
of the beginning of the gradient due to diffusion; the linearity may also be
disturbed at the beginning of the gradient due to the adsorption of the ions onto
the HA surfaces if m,, is small (cf. Remarks 1 and 2 in the section entitled
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FiG. 1. Schematic representation of the molarity gradient of competing ions migrating on the
column at time ¢. The abscissa L' and the ordinate m represent the longitudinal position on the
column and the molarity of competing ions, respectively. The oblique straight line represents the
linear molarity gradient of the ions with a constant slope g'; this migrates on the column, or in the
L' direction on the (L', m) plane, with a velocity vy'. However, it also is possible to consider that
the oblique straight line represents the *‘gradient” of the column position L' with a slope 1/g";
this can be considered to migrate along the molarity gradient of the ions, or in the m direction on
the (L', m) plane, with velocity vy*. These are the first and the second point of view on gradient
chromatography, respectively. (For details, see text.) This figure is used also in the Appendix. In
this instance, L' represents the position, at time ¢, of a given particle migrating in any way on the
column; m is the molarity of the ions at column position L'. (For details, see Appendix.)

“Actual Flux J and Abstract Flux J*”). To be precise, L, should therefore
be defined as the column position at which the molarity of the ions for the
hypothetical gradient, which is obtained by extrapolation of the linear part of
the gradient, is equal to m;,,.]

In the first point of view, it is the column itself that is fixed. Both the
molarity gradient and the band of sample molecules migrate in the L’
direction on the (L', m) plane. We shall call vy’ the migration velocity of the
gradient and v’ the mean migration velocity of sample molecules observed at
a given longitudinal position L' on the column (see Fig, 1). Both v, and v’ are
expressed in units of volume/time. Let us introduce a concept of elution
volume (denoted by V') occurring at the position L’ on the column. This can
be defined as

1
V=1L~ L =—(m— my) (4)
4
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(see Fig. 1), where both L' and m,, are constant, and both L, and m increase
with time ¢, the latter being defined as the ion molarity at the given column
position L’. Therefore V increases with time t. Now, it is possible to write

Ivo'| = dV/dt (5)

Introducing a new flux j, defined as

i=31v'| (6)
and using Eq. (5), Eq. (1) can be rewritten as

div,. j + AL 0 7
Vi) Py (7)
In the second point of view, it is the molarity gradient of competing ions
that is fixed. Both the column and the band of sample molecules migrate in
the m direction on the (L', m) plane. It can be considered that the oblique
straight line in Fig. 1 represents the linear ““gradient™ of column position L’
(with slope 1/g’) rather than the linear molarity gradient of the ions (with
slope g'). We shall call vy* the migration velocity of the “gradient’ along the
molarity gradient, and v* the mean migration velocity of sample molecules
observed at a given position m on the molarity gradient (see Fig. 1; for a
detailed definition of v¥, see the section *‘Specification of Flux J* in Quasi-
Static Chromatographic Process; Fundamental Differential Equation for
Gradient Chromatography’). Both vy* and v* are expressed in units of
molarity/time. Here it is possible to find a parameter s that corresponds to
the elution volume V in the first point of view, occurring at a given position m
on the molarity gradient. This can be defined as

s=myg—m=g'L’ (8)

(see Fig. 1). In Eq. (8), m is constant and both m, and L’ increase with time
t, the latter now being defined as the longitudinal position on the column at
which the molarity of the ions is always equal to m. Therefore, s increases
with time ¢. Corresponding to Eq. (5), it is possible to write

| vo*| = ds/dt (9)

Introducing a new flux j*, defined as

§* =3/ vo*| (10)
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and using Eq. (9), Eq. (2) can be rewritten as

. oC
div, j* +— =0 (11)
Os

Now, corresponding to the fact that, in Eq. (2), (¢ C/dt),, dt represents the
change in molecular density C at a given position m on the molarity gradient
occurring when the time proceeds from ¢ to ¢ + dt, in Eq. (11) (8C/0s),, ds
represents the change of C at position 7 on the gradient occurring when the
value of the parameter s increases from s to s + ds with time ¢. This latter is
caused by a change in the longitudinal column position (where the molarity of
the ions is always equal to m) from L’ to L’ + dL’ occurring with time ¢ (see
Fig. 1). Corresponding to the fact that, in Eq. (2), (6 C/0m), dm represents
the change of C at time ¢ occurring between position m and m + dm on the
molarity gradient, in Eq. (11) (C/dm), dm represents the change of C at
time ¢ when the parameter s takes a value s, occurring between position m
and m + dm on the gradient. It is possible, however, to interpret the
quantities appearing in Eq. (11) as based on the first point of view. Thus
(0C/0s),, ds in Eq. (11) can represent the change of C at time ¢ when the
molarity of the ions at position L’ on the column is equal to m (or when the
elution volume at position L’ is V), occurring between positions L' and L' +
dL’ on the column which correspond, respectively, to the value s and s + ds
of the parameter s through Eq. (8) (the relationship between the extreme left-
and the extreme right-hand side of the equation; see Fig. 1). (0C/dm), dm in
Eq. (11) can represent the change of C at a given position L' on the column to
which corresponds a value s of the parameter s (through Eq. 8) occurring
when the molarity of the ions increases from m to m + dm (or the elution
volume increases from V' to V' + dV) with time ¢ (see Fig. 1). Hence it can be
considered that the solution C(s, m), of Eq. (11) can represent a chromato-
gram for a column of length L' (which corresponds to a value s of the
parameter s) as a function of molarity m of competing ions, or as a function of
elution volume ¥. This can be estimated through Eq. (4) (the relationship
between the extreme left- and the extreme right-hand side of the equation).

It should be noted, however, that the form of flux J* is not yet specified.
Since a chromatogram is produced by the actual flow of molecules issuing
from the bottom of the column, in order for the function C(s, m) to represent a
chromatogram it is necessary that flux J* be defined such that it coincides, at
any instant ¢, with the actual flux J at the bottom of the column (see the
following section).
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Specification of Flux J* in Quasi-Static Chromatographic Process;
Fundamental Differential Equation for Gradient Chromatography

For the purpose of specifying the abstract flux (J* or j*) with density C, let
us consider an apparent flux with density Q also migrating upward along the
molarity gradient. This flux plays an intermediate role of relating the abstract
flux to the actual flux (J or j) with density . Thus the mean migration
velocity v of the actual flux observed at a given position L' on the column
can be represented as

v = Rpvy = By, (12)

(see Fig. 1). The apparent flux is defined as a flux (with density ) that
migrates concomitantly upward along the gradient with a mean velocity

v=(1 = Rp)vo* = (1 — B)vo* (13)

Since, actually, a position L' on the column faces directly a position m on
the molarity gradient, it is evident that any molecule as an element of the
actual molecular flow coincides with the molecule as an element of the
apparent flow existing at the corresponding position 7 on the gradient. It is
generally impossible, however, that the position of any molecule in the
apparent flow occurring on the molarity gradient coincides with the position
of the same molecule as the element of the abstract flow occurring on the
same gradient. This is because the densities of the two fluxes are different. In
order to have a one-to-one correspondence between the molecules in the
abstract flow and the molecules in the apparent or the actual flow, and in
order for the function C(s, m) as a solution of Eq. (11) to have a physical
meaning of the chromatogram, it is necessary that any molecules as elements
of the three flows coincide instantly at the bottom of the column (see the
preceding section). For this purpose, denoting by L’ the position at the
bottom of the column with length L', and by m the corresponding position on
the gradient (the first point of view; see the preceding section), let us define
the abstract flow such that the part 2 dL’ of the actual flow existing between
position L' and L’ — dL’ on the column, or the part @ dm of the molecular
distribution €} of the apparent flow existing between positions m and m +dm
on the gradient, coincides, at any instant ¢, with the part C dm/B of the
molecular distribution C of the abstract flow existing between positions m
and m — dm/B on the same gradient. The position m migrates on the gradient
with time . Two conditions for the coincidence of the three fluxes at the
bottom of the column are explored below. As a whole, these will make a
sufficient condition.

The first condition would be that the mean migration velocity v* of the
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abstract flow to be equal to v/B or (1 — B) vy,*/B (see Eq. 13) at any position
on the molarity gradient, or that the mean flux be equal to [(1 — B)v,*/B]C.
Here, the following remark is useful: It is possible to consider that any
position L' on the actual column is the bottom of the subcolumn involved
between the position L' and the column top, so that every time the position L’
is given on the column, both the subcolumn and the corresponding abstract
flow can be defined. (It should be emphasized, however, that these are
definitions based on the first point of view in gradient chromatography; cf.
Remark 1 below.) Let us consider a subcolumn that just involves the band of
molecules initially formed at the top of the column (see the Introduction). In
a first stage of the development process when molecules are completely
adsorbed on the crystal surfaces, the state of B = 0 is realized in the
subcolumn. Now, denoting by AL’ the actual longitudinal distance from the
bottom of the subcolumn to the position of a given molecule in the
subcolumn, and by Am the corresponding distance on the molarity gradient
(expressed in units of molarity), then, in the apparent flow, the same molecule
should exist at position m + Am on the gradient, m being the position at the
bottom of the subcolumn. In the abstract flow, however, the molecule should
exist on the other side of the position m the distance | f m-Amdm/B | apart
from this position, or it should exist at position m + j";_A’”dm/B. B, in
general, is a function of m with a minimum limiting value zero that decreases
monotonically with a decrease of m. Therefore, when B = 0 at the position of
the molecule under consideration in the apparent flow, then, in the abstract flow
the value of B for the corresponding molecule should also be zero. This
means that the position of the molecule in the abstract flow is m +
f m-Amdm/B = —< (cf. Remark 2 below). This hypothesis explains the
actual situation where the molecule cannot be eluted out of the subcolumn if
it is completely adsorbed on the crystal surface. In order for the molecule to
be eluted out of the subcolumn when B increases to have a finite value (due to
increase in molarity of the ions), it is necessary that, when B = O, the
molecule already be migrating with an infinite velocity at a position infinitely
apart from the position m. This is the physical interpretation for the fact that,
in the abstract flow, when B = 0, then | v¥| (= (1 — B)| vo*| /B) = «. As C
= 0 when B = 0 (Eq. 3), the mean flux [(1 — B)v,*/B|C [which can be
rewritten as (1 — B)v,*Q; see Eq. 3| has a finite value vy*Q2 even when
| v¥| = .

Let us explore the second condition (see above). Due to the additive
property of flux, the total flux J* can, in general, be represented as a sum of
the mean flux (see above) and the flux due to molecular diffusion. With a
quasi-static chromatographic process occurring under Assumptions (a)—(c)
in the Introduction Section, the actual and the apparent fluxes due to
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diffusion should be proportional to —grad, ) and --grad,, Q at any position
on the column and the gradient, respectively (cf. the explanation of Eq. 1 in
Ref. 1). In order for the total abstract flux to coincide always with the actual
or the apparent flux at the bottom of the column, it is both sufficient and
necessary that the abstract flux due to diffusion also be proportional to -grad,,
Q or -grad,, (C/B) at least at the bottom of the column.

The actual and the apparent fluxes due to diffusion should also be
proportional to B at any position on the column and the gradient, respec-
tively, because these fluxes (with density () should be proportional to the
mean migration rate, due to diffusion, of molecules in a column section, and
this latter should be proportional to the ratio B of the amount of molecules
existing in the mobile phase to the total amount in the column section. Hence
the actual and apparent fluxes should finally be proportional to —B grad,
and —B grad,, ) at any position on the column and the gradient,
respectively.

The situation is different with the abstract flow. We show below that the
abstract flux due to diffusion should be inversely proportional to B. In the
above it was mentioned that, when a molecule actually exists at a position on
the gradient the distance Am apart from the position m at the bottom of the
column (measuring in units of molarity), then, in the abstract flow, the same
molecule should exist at a position on the other side of the position m the
distance | [, 2"dm/B| apart from this position. This means that the
actual distance (denoted by d'm) from this molecule to any other molecule
existing in the neighborhood of this molecule should correspond to the
distance d'm/B in the abstract flow. It follows from this that, in the abstract
flow, the relative mean migration rate, due to diffusion, between any pair of
molecules existing in an elementary domain at any position on the gradient
should be inversely proportional to B. Hence the abstract flux due to
diffusion should finally be proportional to —(1/B) grad,, (C/B), at least at the
bottom of the column. For this purpose it is sufficient that this flux is
proportional to —(1/B) grad,, (C/B) at any position on the gradient. This is
the second condition for the coincidence of the three fluxes at the bottom of
the column.

The total flux J* can now be represented as

1 — B(t,m) D* C
= —v,*C — grad,, (14)
B(t, m) B(t, m) B(t, m)
where D*, with dimensions of molarity?/time, is proportional to | vp*| .
[This, or the constancy of E (see below), can be confirmed by using a method
similar to that used to show the constancy of the parameter € in Appendix ITI
of Ref. 1.] The reason why B is considered as a function of not only m but

*
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also of time ¢ will be mentioned later. Introducing a proportionality constant

D* D¥*
== = (15)
| vo¥ ds/dt
(see Eq. 9), the flux j* (Eq. 10) can be represented as
—
) 1 — B(s, m) =
= C— grad,, (16)
B(s, m) B(s, m) B(s, m)

where the arrow shows that the term under the arrow is a vector. B(s, m)
simply shows that B is a function of s and m (see below), and it does not mean
that the form of the function B(s, m) is identical witht he form of B(¢, m). By
substituting Eq. (16) into Eq. (11), the fundamental differential equation for
gradient chromatography:

—_—
. 1 — B(s, m) = C oC
div,, C— grad,, +—=0 (17
B(s, m) B(s, m) B(s, m) ds

is obtained. (Proofs that Eq. 17 represents—the fundamental equation for
gradient chromatography will be given in the section entitled ‘“Derivation of
Flux J from Flux J*,” “Derivation of Flux J* from Flux J,” and “General
Method of Finding the Fundamental Flux in Any Type of Chromato-
graphy.”)

Based on the second point of view on gradient chromatography (see the
preceding section), let us consider a column section migrating on the column
with the same velocity as that of the molarity gradient. Within this column
section the mean molarity m of the ions is kept constant. However, the width
in the distribution in molarity around the mean value m increases with time #
due to diffusion. This is the reason why B (which depends upon not only m
but also on the distribution in molarity around m) is considered as a function
of both ¢ and m (Eq. 14). When the position L’ of the column section under
consideration migrates toward the bottom of the column, the value of the
parameter s increases (Eq. 8). Therefore, s increases with time ¢, and B can
be considered as a function of s and m (Egs. 16 and 17). The form of the
function B(¢, m) or B(s, m) can be determined by introducing the assumption
of parallel longitudinal diffusions of both sample molecules and competing
jons in the column [Assumption (b) in the Introduction Section; see the
section entitled “Microscopical Point of View: Longitudinal Diffusion of
Competing Ions, the Form of Function B(s, m), and a Solution of Eq. (17)"].

Remark 1. Equation (17) has been derived on the basis of a hypothesis
that the abstract molecular flux should coincide with the actual flux at the
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bottom of the column. Since the bottom of the column is a fixed longitudinal
position on the column, this hypothesis belongs in the first point of view on
gradient chromatography (see the section entitled “Two Points of View on
Gradient Chromatography’”). When once it is derived, however, Eq. (17)
belongs purely in the second point of view. As a result, for any subcolumn
defined as part of the actual column, the chromatographic behavior of
molecules can be described by using the same equation, Eq. (17) (see below).
However, the behavior based on the second point of view has only some
abstract meaning. It is only by transferring from the second to the first point
of view that the abstract meaning can be translated into a physical meaning
for the chromatogram. It is in the process of this translation that the meaning
of the column length (i.e., a fixed longitudinal position at the bottom of the
column) is given to the quantity s/g’ (see Eq. 8), s being a variable involved in
Eq. (17). It also is possible to give s/g’ the meaning of any fixed longitudinal
position on the column, or the meaning of the length of the subcolumn
involved between this position and the column top. It was mentioned earlier
in this section that every time a position L' is given on the column, both the
subcolumn.and the corresponding abstract flow can be defined. It should be
emphasized, however, that these are definitions made after the translation
has been achieved. The abstract flow occurring without the translation is
uniquely represented by a unique equation, Eq. (17). In the latter half of the
preceding section, the process of translation was mathematically pursued.

Remark 2. It was mentioned that when B = 0, then, in the abstract flow,
the molecule should exist at a position m = —< on the molarity gradient. This
is based on the first point of view [cf. the section entitled ‘““Microscopical
Point of View: Longitudinal Diffusion of Competing Ions, the Form of
Function B(s, m), and a Solution of Eq. (17)”]. Actually, however, the
minimum value of m is m;, (= 0). It is therefore necessary that, in defining
the abstract flow, the quantity m be defined even when it takes negative
values. This definition should be made at the same time as the definition of
the parameter B or By which is a function of m or m,. For this problem, see
section entitled “The Form of Function B,(m,) and the Normalized Property
of the Solution (Eq. 62) of Eq. (17).”

Derivation of Flux J from Flux J*

In an extreme case when there is no molecular diffusion in the abstract
flow or when E—0, Eq. (17) reduces to

1 — B(m) 3
. - m C_
div,, [ o) c] +5.=0 (18)
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where B can be assumed to be a function of only m because, in the situation
where there is no molecular diffusion, there should also be no diffusion of the
ions. Denoting by x the absolute value of the flux appearing in Eq. (18), or
writing

_ 1 — B(m)

om) C = (1 — B(m))Q (19)

it is possible to give x a physical meaning of the mean density of molecules on
the crystal surfaces at position L' on the column. The position L' is
determined when the value of s is given (Eq. 8). By using Eq. (19), Eq. (18)
can be rewritten as

i[ B(m) ]+6X=0 (20)

os |1 — Bom)X] " om

Based on the first point of view (see the section entitled ““Two Points of View
on Gradient Chromatography”), it can be considered that (6x/0m), dm
represents the change in density x at position L’ on the column (correspond-
ing to a given s value), occurring when the molarity of the ions increases from
m to m + dm or when the elution volume increases from V' to V + dV with
time ¢ (Eq. 4; see Fig. 1). On the other hand, (¢ C/ds),, ds or

B(m)
[a <1 - B(m)x>/as]m @

would represent the change in flux

—

B(m)
1 — B(m)"
with density x and migration velocity

——

B(m)
I — B(m)

at time ¢ when the ion molarity at position L' is m or the elution volume at
that position is ¥V, occurring between positions L' and L' + dL'. These
positions correspond to the values s and s + ds of the parameter s,
respectively. Under these considerations, Eq. (20) (i.e., Eq. 18) can still be
rewritten by using Eqs. (4) and (8):
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. B(m) ax _
div,. [1——_ B(m)x] 3 0 (21)

Equation (21) can give chromatograms for subcolumns involved between
any longitudinal column positions (L') and the column top, respectively (see
the section entitled ‘‘Specification of Flux J* in Quasi-Static Chromato-
graphic Process; Fundamental Differential Equation for Gradient Chroma-
tography’). In other words, Eq. (21) can give not only a chromatogram for a
column with a given length L’ but also a distribution, at time ¢, of molecules
on the column occurring, provided there is no longitudinal molecular
diffusion.

Nevertheless, Eq. (21) (derived from Eq. 17) does not represent the
continuity equation for the actual molecular flow on the column; viz., it does
not express the conservation of the amount of molecules within the inter-
stices, including the crystal surfaces, of the column section. This can be
confirmed by the following consideration. The flux in Eq. (21) can be
rewritten as

B(m)
1 — B(m)

(see Eq. 19). By using Eqs. (6), (12), and (22), it is easy to show that the flux
in Eq. (21) is identical with flux j (Eq. 7) provided there is no longitudinal
diffusion in the column, whereas in Eq. (21) it is the molecular density x on
the crystal surfaces and not the total density Q2 in the column section that
changes with an increase in elution volume V (the second term on the left-
hand side of Eq. 21; compare Eq. 21 with Eq. 7). Thus Eq. (21) shows that,
in the ideal state of no longitudinal diffusion in the column, the chromato-
graphy is carried out independently of the amount of molecules existing in the
interstitial liquid; the proportion of molecules adsorbed on the crystal
surfaces (within the molecular band) decreases monotonically with time ¢,
caused simply by a gradual increase in ion molarity m. Therefore the
migration of the molecular band on the column is carried out due to an
increase of m. This is done independently of the amount of molecules in the
interstitial liquid.

In order for chromatography to occur independently of the amount of
molecules in the interstitial liquid, it logically is necessary that the behavior
of molecules in the interstitial liquid be independent of the interaction with
crystal surfaces. This means that, in the absence of heterogeneity in the flow
rate (“Introduction” section), Fick’s second law:

X = B(m)Q (22)

t'hermAL’C: aC/at (23)
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should be realized in the interstitial liquid, where D, with dimensions of
volume’/time, represents the thermodynamic diffusion constant concerning
the L’ direction on the column, L' being represented in units of volume.
Introducing a parameter

t +
therm therm

Orermn = = 24
. vl  dV/dt (24)
with dimensions of volume, Eq. (23) can be rewritten as
e, C = 0C/OV (25)

By using Egs. (21), (22), and (25) and writing B(L’, m) instead of B(m)
[since B, in general, depends upon both s and m (see the immediately
preceding section), and s can be considered as a function of L' (Eq. 8)], the
change in total density {2 occurring with an increase in elution volume V in
the absence of heterogeneity in the flow rate can be written as

o dx eC . Y3 ZI
T =5y Ty~ —dive [BITmO) + buend, C (26)

or, with rearrangement

s o

div; [B(L', m)QY — 0., grad; C] Y% =0 (26
is obtained. It can be considered that the first and the second terms within the
divergence term in Eq. (26’) represent the mean flux and the flux due to
thermodynamic diffusion in the actual molecular flow occurring on the
column itself, respectively. Therefore, Eq. (26') should be valid even when
dx/dV and 0C/0V are not independent of one another, representing the
general continuity equation for the actual molecular flux in the absence of
heterogeneity in the flow rate. In its presence, it is necessary to add to the flux
in Eq. (26’) a flux due to diffusion occurring caused by flow heterogeneity. In
the immediately preceding section it was shown that this flux should be
proportional to —B grad,. Q). Thus, introducing a positive proportionality
constant, @, with dimensions of volume

] —_— N
div; [B(L',m)Q — By, grad; C — B(L',m)grad; Q2] +-;I; =0 (27)

is obtained. In a quasi-static chromatographic process where the effect of
thermodynamic longitudinal diffusion is neglibible in comparison with the
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effect of diffusion due to heterogeneity in the flow rate [ Assumption (a) in the
“Introduction”], the relationship

Oerm grad;, C K 8B(L', m) grad; Q (28)
should be fulfilled; Eq. (27) reduces to

. EYo)
div, [B(L',m)Q — 6B(L', m) grad, Q] +—2 =0 (29)

By comparing Eq. (29) with Eq. (7), the expression of flux j,

j= B, m)Q — 6B(L', m) grad, 2 (30)

is obtained. Let us introduce a diffusion coefficient D' for diffusion due to
heterogeneity in the flow rate. This has dimensions of volume?/time and is
proportional to | vy'| , fulfilling the relationship

g D _ D
v dV/de

(cf. Eq. A37 in Appendix III of Ref. 1). Corresponding to Eq. (28), the
relationship

(31)

Djerm grad;. C K< D'B(L’', m) grad;. Q (32)
is fulfilled. By using Eq. (31), Eq. (29) can be rewritten as Eq. (1) where

J=B(L', m)vy'’Q — D'B(L', m) grad, Q (33)

Equations (1) and (33) are equivalent to Eq. (4) in Ref. 1.

Finally, in an extreme case when the adsorption of sample molecules does
not occur at all on the crystal surfaces during the chromatographic process,
or when B= 1 and C = } (see Eq. 3), the coincidence of the three fluxes at
the bottom of the column (see the immediately preceding section) leads to the
relationship

0 grad, Q = E grad,, Q@ = — grad, Q (34)
g

from which the general relationship between the parameters Z (Eq. 15) and ¢
(Eq. 31):

E=g0 (33)

is obtained.



13:48 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. Il 835

Derivation of Flux J* from Flux J

Following the argument in the immediately preceding section in the other
direction, Eq. (18) can be derived starting from Egs. (1) and (33). This
process is argued in detail in Appendix II in Ref. /. The flux j* can be
obtained by adding a flux due to diffusion to the flux in Eq. (18). This shouid
be done in such a way that flux j* coincides with flux j at the bottom of the
column. This process is equivalent to the process of finding the second
coincidence condition of the three fluxes at the bottom of the column (see the
section entitled ““Specification of Flux J* in Quasi-Static Chromatographic
Process; Fundamental Differential Equation for Gradient Chromato-
graphy”). Flux j* can be transformed into flux J* through Eq. (10).

It has now been shown that both fluxes J* and J are derivable from each
other. Under Assumptions (a)—(c) in the “Introduction’ section, the expres-
sion of the abstract flux J (Eq. 33) a priori is true. This means that the
expression of the actual flux J* (Eq. 14) is also true; Eq. (17) should, in
fact, describe the chromatographic process in gradient chromatography.

General Method of Finding the Fundamental Flux
in Any Type of Chromatography!

Flux J* or j* is not the only one that is conceivable on the molarity
gradient; the apparent flux with density ) is conceivable (see the section
entitled ““Specification of Flux J* in Quasi-Static Chromatographic Process;
Fundamental Differential Equation for Gradient Chromatography’). This
flux, denoted by j, can be represented as

N —_—
Jj= 11— B(s, m)]Q — EB(s, m) grad,, (36)
fulfilling a continuity equation
. o
div, j+—=0 (37)
Os

We consider below a general method of judging what type of flux is the
fundamental one for any type of chromatography.

For this purpose it is sufficient to investigate the property of the continuity
equation concerning the mean flux, or the equation in which the value of the
parameter § or E is zero. This is because the flux due to diffusion is
conceivable independently of whether or not it is chromatographically

fundamental (see the section entitled “*Specification of Flux J* in Quasi-

"The argument made in this section partially overlaps the argument made in the Theoretical
Section of Ref 5.
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Static Chromatographic Process; Fundamental Differential Equation for
Gradient Chromatography’’). The mean flux represents a flux concerning the
mean part, with an infinitesimal width, of the molecular band migrating on
the column (or the molarity gradient of competing ions). In this section the
effect of diffusion is always canceled out and the relationship

R, =B (38)

is fulfilled. As Eq. (38) represents the causality itself in chromatography, if
Eq. (38) is fulfilled on the column, then the chromatographic process should
in general be represented by using a continuity equation concerning a certain
flux (cf. the section entitled “Actual Flux J and Abstract Flux J*”).
Therefore, arguing in the other direction, if Eq. (38) can be derived on the
basis of the continuity equation for the given mean flux under a boundary
condition such that the molecular band migrating on the column or the
molarity gradient should have an infinitesimal width (at a given instant), then
the flux under consideration should be chromatographically fundamental.

By using this method, let us first confirm the fact that flux j is fundamental
with stepwise chromatography (see the section entitled ‘“Actual Flux J and
Abstract Flux J¥”°). When 8 — 0, the continuity equation for flux j {Eq. 29)
reduces to

4 B(m)Q) +—6—Q"0 39
S (BOMQ) + 5 = (39)

where m or B(m) is constant. Therefore, Eq. (39) can be rewritten as

[aL'] _ v -
ovl.,” “equr _ BM (399

On the basis of Eq. (39'), it is easy to show that, if the molecular band (with
density Q) has an infinitesimal width at any instant when the elution volume
V is given (at a position L' on the column; this is the boundary condition for
Eq. 39'), then the band should maintain the infinitesimal width during the
whole process of chromatography. Writing L' for the position of the
infinitesimal band, it also is easy to derive

dL’'/dV = B(m) (40)

where i1 represents the molarity of the ions at which the molecular band with
infinitesimal width exists. In this instance, 7 is constant. The left-hand side
of Eq. (40) is the definition of Rr. Hence Eq. (38) has been obtained.
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Let us examine flux j* for gradient chromatography. When E—0, the
continuity equation for flux j* (Eq. 17) reduces to Eq. (18), which can be
rewritten as Eq. (20) or as

[é] _ _Ox/dm _ B(m)
om], 0x/ds 1 — B(m)

On the basis of Eq. (20'), it can be shown that, if the molecular band (with
density x occurring on the crystal surfaces) has an infinitesimal width at any
instant when molarity m is given [at a position L’ (= s/g’; see Eq. 8) on the
column], then the band should maintain the infinitesimal width during the
whole process of chromatography. Defining 5 as

(20"

s=gL (41)

the relationship

ds B(m)
= (42)
dm 1 — B(m)

can be derived. On the other hand, we have a general relationship

ds dL'/dV
_—= (43)
dm 1 —dL'/dV
the derivation of which is made in the Appendix. By substituting Eq. (43)
into Eq. (42), Eq. (40) can be obtained. Hence, recalling that dL'/dV
represents Ry, Eq. (38) can be derived.
Let us examine the apparent flux j for gradient chromatography. When
=—0, we can derive, from Egs. (36) and (37), the relationship

2 [1— ] 12Xy (44)
as L1 — B(m)*] " om
or
B} dx/o 1
[—s] S (44)
om] dx/ds 1 — B(m)
from which
s 1
= T (45)
din 1 — B(m)
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is obtained. As Eq. (45) is different from Eq. (42), it can be concluded that
Eq. (38) cannot be derived from Eq. (44).

Finally, let us confirm the fact that flux j cannot be fundamental with
gradient chromatography. When § — 0, the continuity equation for flux j (Eq.
29) reduces to Eq. (39). In this instance, however, m is not constant. By
using Egs. (4) and (8), Eq. (39) can be rewritten as

) N
—(B(m)Q)+—=0 (46)
ds om
or as
[ﬁ] _ _8Q/Gm_ B( (46")
omlo " aqjas B0
from which
ds/dm = B(m) 47

is obtained. As, again, Eq. (47) is different from Eq. (42), Eq. (38) cannot be
derived from Eq. (46) or (39).

Microscopical Point of View: Longitudinal Diffusion of Competing
lons, The Form of Function B(s, m), and a Solution of Eq. (17)

In order for the shape of the theoretical chromatogram to be calculated
from Eq. (17), it is necessary that both the form of the function B(s, m) and
the initial chromatographic condition be given. The form of B(s, m),
however, depends upon not only the initial condition itself of chromato-
graphy but also the distribution of competing ions within each vertical section
of the column due to longitudinal diffusion. With a quasi-static chromato-
graphic process, the longitudinal diffusion of the ions is carried out
essentially in parallel with the diffusion of the sample molecules (Assumption
(b) in the “Introduction” section). In the argument below, the following four
processes, which are related to one another, will proceed at the same time:
(1) the derivation of the distribution law of the ions within a vertical column
section, (2) the introduction of the initial condition for Eq. (17); it is assumed
that the molecules are initially adsorbed at the top of the column, forming a
band with an infinitesimal width, (3) the determination of the form of the
function B(s, m), and (4) the solution of Eq. (17).

In order to consider the general relationship between the distribution of
sample molecules and that of competing ions in a column, a microscopical
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point of view is useful. Thus, let us divide the column into a number of paral-
lel microcolumns (called column \) with infinitesimal diameters (to be precise,
diameters of the order of magnitude of the interdistances among HA crystals
being packed; see Ref. 1). We characterize column A in such a way that the
volume of the solution that flows into any column X is the same within any
unit time interval (/). It is possible to give A a meaning of the (bi-
dimensional) coordinate that indicates a position on the surface of a vertical
column section. We define dX as the ratio of the volume of the solution that
flows into a column A to the volume that flows into the total column, fulfilling
the relationship

fax=1 (48)

Due to this definition, the total macroscopical area of any vertical column
section is unity if it is measured by using the coordinate A. Now, based on the
second point of view of gradient chromatography (see the section entitled
“Two Points of View on Gradient Chromatography”), let us consider a local
molarity m, of competing ions at position A on the surface of a column
section where the mean molarity of the ions is always equal to m. The
probability density (denoted by v) of the occurrence of molarity m), changes
with time ¢ or with an increase in the value of the parameter s. With a lapse of
time the longitudinal position L' on the column with constant m value
migrates toward the bottom of the column, and the value of s, being
proportional to L’ (Eq. 8), increases. For any vertical section of the column,
the relationship

vdm, = d\ (49)

is fulfilled. We now show that, according to the assumption of parallel
longitudinal diffusions of the molecules and the ions ( Assumption (b) in the
“Introduction” section), v should fulfill the differential equation

feond Qflﬂ_ — EZB (5())
_amﬁ as
under the initial condition

D—g = O(my — m) (51)

Thus, within the section (with an infinitesimal width) at the top of the
column, the molarity of the ions which have just been introduced into the
column should be homogeneous. Their molarity should be equal to the mean
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molarity m. It can be considered that these ions constitute a part of the
molarity gradient. This part has an infinitesimal width when it exists at the
top of the column. With the lapse of time the position m on the gradient
migrates toward the bottom of the column, and the ions under consideration
are diffused around the same position m on the gradient. The gradient itself is
always kept constant because the diffusion of the ions under consideration is
canceled out by the diffusion of the other ions. It is evident that, if a physical
meaning of the general position on the gradient is given to m,, then Eq. (50)
(or the equation obtained by replacing s and E in Eq. 50 with time ¢ and
diffusion coefficient D*, respectively; see Eq. 15) represents the movement
of the ions under consideration on the molarity gradient. Due to the linearity
of the gradient, however, if within a part d\ of the surface of a column
section, a change dm, in molarity of the ions under consideration occurs,
then this should be compensated by the change —dm, in molarity of the other
ions. This means that Eq. (50) can also represent the distribution in molarity
of the ions in general occurring on the surface of a column section, thus giving
m, a physical meaning of the local molarity of the ions on the surface of a
column section. Under the condition given by Eq. (51), Eq. (50) has a
solution

D= _1__e4(m)\—m)2/45.v (52)
47Es
which represents the distribution law of the ions within a column section.
In general, it is possible to represent the macroscopical parameters m, {2,
and C occurring within a column section in terms of the corresponding
microscopical parameters m,, £, and Cy:

1, -
m = f’"x dx = \/ﬁj mye (M mIAEs gy (53)
.
Q= [Qud\ = —— [ Qe " ™45 g, (54)
\V4rEs
and
. 1 -
C= [Cyd\= ——=—=[Ce" Mm% gpm, (55)

V4TEs

where the extreme right-hand terms have been obtained by using Egs. (49)
and (52). Calling B the partition of sample molecules in solution occurring
locally in an infinitesimal part d\ of the column section, we can write



13:48 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. {1l 841

C>\ = B)\Q)\ (56)

where, with small sample loads, B, is a function of only m,, which increases
monotonically with an increase of m,, tending to unity when m, approaches
to infinity. The form of the function B,(m,) will be given in the following
section (Eqgs. 75 and 76). B, is related to the macroscopical parameter B by
the general relationship

1 1 b —(my—m)2/4Es
B=g /B\d\ = meBAQAe A dm,  (57)

and C (Eq. 55) can be represented by using 2, and B, as

1 -
C= Tamms] Brne e dm, (58)

From the first equality in Eq. (5§5), Eq. (56), and the first equality in Eq.
(57), the general macroscopical relationship between C and §2 (Eq. 3) can be
derived.

In agreement with the experiment (‘‘Introduction” section), let us assume
that a molecular band with an infinitesimal width is formed initially at the top
of the column. According to the assumption of parallel longitudinal diffusions
of the molecules and the ions, however, the band should broaden to have a
finite width when the migration of the band begins (cf. Eq. 52). This means
that, except for the section at the top of the column, within any column
section existing between position L' and L' + dL', when the mean molarity of
the ions is between m and m + dm, the sample molecules should appear only
in some infinitesimal local regions where molarity of the ions is also extended
in an infinitesimal range. Let this molarity range be between 71, and 1, +
dm,. Then we evidently have

Q) = 6(my — my) (59)

where Q, is normalized in order for the chromatogram C finally to be
normalized (see the following section). Since L' is proportional to s (Eq. 8),
Eq. (59) is fulfilled for any column section being defined when both s and m
are given.

Actually, due to thermodynamic longitudinal diffusion, the whole region
within the column section is occupied by molecules. The molecules form a
band with a finite width in the longitudinal direction on the column (see
above). Nevertheless, Eq. (59) (obtained under the assumption of no
thermodynamic longitudinal diffusion) should be valid for the final result of
the calculation of the chromatogram because, with a quasi-static process, the
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effect of thermodynamic diffusion is canceled out in the interior of the
molecular band.

Substituting Eq. (59) into Eqs. (54), (57), and (58), and writing m, instead
of m,, we obtain

O = 1 ew(m/\—m)z/tiEs (60)
4=y
B(s, m) = B\(m)) (61)
and
1 —(m -'m)2/4=s
C= e A =*By(m,) (62)

V4rEs

respectively. It can be considered that m, is a function of both s and m (see
below), and that Q and C in Egs. (60) and (62) have the forms

Q = Q(s, my(s, m)) (63)

and

C = C(s, my(s, m)) (64)

respectively. The reason why both  and C have the forms of Egs. (63) and
(64), instead of the forms Q(s, m, my(s, m)) and C(s, m, my(s, m)),
respectively, will be understood later.

Let us calculate the function my(s, m). This will determine the form of the
function B(s, m) because the function By(m,) is given (Egs. 75 and 76; see
Eq. 61). The slope of the molarity gradient on any microcolumn A is the same
if it is expressed in units of molarity/volume, and it can be written as g’/8A.
(We here write 6\ instead of d\ in order to represent simply an infinitesimal
part of the column section.) This is because the volume of the solution that
flows into any microcolumn is the same within a unit time interval (see
above). Writing L,’ 6\ as the longitudinal position of the infinitesimal
molecular band (in the absence of thermodynamic longitudinal diffusion) on
a column A expressed as a sum of interstitial volumes involved between this
position and the column top, and defining 3, as

S\ =£l—4\' é‘}\:g'L/\’ (65)
oA
it is evident that §, is related to the local molarity 7z, at the position of the
band by the relationship
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i)\ = mo - m)\ (66)

This is because the molarity of the ions at the column top should be equal to
mg for any column A (cf. Eq. 8). On the other hand, calling (L,'), 6A the
position at the beginning of the gradient on the column A (for some remarks
on the beginning of the gradient, see p.822),we have a general relationship

ds, _ dLy' /d(Ly )
dﬁ’l)\ 1 - dI_J)\'/d(LO,))\
the derivation of which is made in the Appendix. As (L"), 6\ is equal to (or,

depending upon the definition of the elution volume, it is different only by a
constant value from) the local elution volume V) 8\, we also have

(67)

A (R, =B (68)
ALy avy,
where (Ry), represents the local Ry for the infinitesimal molecular band on
the column X being equal to B,. By substituting Eq. (68) into Eq. (67), and
writing /1, simply as m, (because in Egs. (60)—(64), /i, was written as m, ):

dsy, _ _ B\(my)
dmy, 1 — By\(m,)

(69)

is obtained. Taking into account the fact that at the top of the column
(where 5, = 0) the relationship m, = m,, is fulfilled, Eq. (69) can be
integrated to give

5 = r(my) (70)
where
— mx  B\(m,)
r{m) j;m 1 = By\(m,) am b

By substituting Eq. (70) into Eq. (66), and writing m, instead of 7,

r(m,) = my — m, (72)

is obtained. Now, by eliminating m, between Eq. (72) and the left-hand side
equation in Eq. (8), we have

m=my, + r(my) —s (73)
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which represents the function m,(s, m) in an implicit form. Hence the
function B(s, m) has been determined (see above). It should be noted that,
due to Eq. (73), the term m, — m appearing in the exponential parts of both
Egs. (60) and (62) can be replaced by the term s — n(m, ). This is the reason
why Egs. (60) and (62) have forms represented by Egs. (63) and (64),
respectively.

It can be considered that Eqg. (62) is a solution of Eq. (17). Equation (62)
has the form of Eq. (64), and the functions B(s, m) and m,(s, m) are given by
Eqgs. (61) and (73), respectively. This can be directly confirmed by substitut-
ing Eq. (62) into Eq. (17) (although the calculation is somewhat laborious).
At time O at the top (L' = 0) of the column, m, is equal to m;, for any
microcolumn A, At the column top the relationship s = 0 is fulfilled (Eq. 8).
This means that Eq. (60) tends to a delta-function at time O at the top of the
column, giving

lim Q= 68(m — m,,) (74)
s—+0
my~mi

Equation (74) shows that a band of molecules with an infinitesimal width is
formed initially at the column top, being compatible with a fundamental
assumption (Point 2 in the first paragraph of this section). It can be
considered that Eq. (62) (with both Eqgs. 61 and 73) is a solution of Eq. (17)
obtained under the initial condition given by Eq. (74).

Equation (17) itself belongs in the second point of view on gradient
chromatography (see the section entitled “Two Points of View on Gradient
Chromatography’’; see Remark 1 in the section entitled *“Specification of
Flux J* in Quasi-Static Chromatographic Process; Fundamental Differential
Equation for Gradient Chromatography’’). It can be considered that Eq. (74)
also belongs in the second point of view because, from this point of view,
when t— +0, then s— =0 (see the section entitled “Two Points of View on
Gradient Chromatography”). Equation (74) shows that, at time 0, a
molecular band with an infinitesimal width is formed at a given position, m =
m;,, on the molarity gradient. This is not incompatible with the consideration
made in the section entitled “Specification of Flux J* in Quasi-Static
Chromatographic Process; Fundamental Differential Equation for Gradient
Chromatography” that, in the initial state of B, or B = 0 at the top of the
column, the molecules should exist at position m = — on the molarity
gradient, since this latter is a picture captured after the transfer from the
second to the first point of view has been achieved (see Remarks 1 and 2 in
the section entitled *““Specification of Flux J* in Quasi-Stati Chromato-
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graphic Process; Fundamental Differential Equation for Gradient Chro-
matography’).

Equation (62) represents, with Eq. (73), a chromatogram, as a function of
ion molarity m, obtained when the parameter s is given (i.e., when both length
L’ of the column and slope g’ of the molarity gradient are given; see Eq. 8).
m, is an intermediate parameter. Both Eqs. (62) and (73) were derived in an
earlier paper (/) by using a different method [Eqgs. 36 (or 36’) and 34 in Ref.
1 where somewhat different expressions are used]. These equations have
been confirmed experimentally (2).

Remark. In Fig. 1 in Ref. 2 the standard deviations ok, of both
theoretical and experimental chromatographic peaks of lysozyme are shown
as functions of length L (being proportional to L’) of the column for three
different slopes g’ of the molarity gradient. It can be seen in this figure that
Tty in general, decreases rapidly with an increase of L when L is small, but
that g, increases slowly after the first rapid decrease. Figure Al in
Appendix II of Ref. 2 shows that, when L is small, the elution molarity (at the
center of gravity of the peak) is also small. This means that the smaller the
column length, the smaller the ion molarity within the vertical section at the
bottom of the column occurring when the sample molecules co-exist in this
section. The aspect of Fig. 1 in Ref. 2 can explicitly be understood from the
structure of Eq. (17). Thus, in this equation, the diffusive part of the abstract
molecular flux is represented by the term (Z/B) grad,, (C/B). The abstract
flux coincides with the actual flux at the bottom of the column. Since the
factor C/B within the gradient term in the diffusive part of the abstract flux
can be written simply as ) (see Eq. 3), representing the total molecular
density within the column section, it is not this factor but rather the factor 1/B
in the exterior of the gradient term that depends markedly upon the value of
B. On the other hand, B decreases with a decrease in molarity of the ions co-
existing with the molecules. This means that the smaller the length L of the
column, the smaller is the B value for molecules existing at the bottom of the
column (see above). Therefore, when L is extremely small, a considerable
longitudinal molecular diffusion should occur at the bottom of the column.
This explains the reason why O+ increases rapidly with a decrease of L
when L is small. The fact that o, ,, increases slowly with an increase of L
when L is large enough can be considered to be due to the fact that the B
value is close to the maximum value (equal to unity). This means that B is
almost constant. Therefore, the diffusion that occurs is essentially caused by
the factor —grad,, C or —grad; C (since —grad; C is proportional to —grad,
C). This means that o, increases with an increase of L because, the larger
the length L of the column, the larger is the volume of the solution that passes
the interior of the total column.



13:48 25 January 2011

Downl oaded At:

846 KAWASAKI

The Form of Function B,(m,) and the Normalized Property of the
Solution (Eq. 62) of Eq. (17)

With small sample loads, when the adsorption of molecules occurs onto a
single type of crystal site, the function B,(m,) (see Eq. 61) is given by both
Egs. (Al) and (A2) in Appendix I of Ref. /. These equations can be
rewritten into a single equation as

1
1 + Brer* (p'm, + 1)

By(m)y) = (75)
where ¢ and B are positive constants representing the properties of the
competing ions and the column, respectively. X', x, ¢, and 7 are also positive
constants representing the properties of the sample molecules. Thus x’ is the
average number (in the equilibrium state) of adsorbing sites of HA on which
the adsorption of competing ions is impossible due to the presence of an
adsorbed molecule. x’ therefore represents the effective dimensions of the
sample molecule. x is the average number (in the equilibrium state) of
functional groups per molecule that react with sites of HA, —¢& (¢ > 0) is the
adsorption energy of a functional group of the molecule on one of the sites of
HA, and 7 is the number of effective geometrical configurations of a sample
molecule on the crystal surface of HA (in the equilibrium state). (For details,
see Appendix I of Ref. /.)

Equation (75) is valid, however, only when 0 < m, < =, and it shows that
B, increases monotonically with an increase of m,, tending to unity when m,
approaches infinity. Experimentally, m, moves between the initial value m,,
(= 0) and a value large enough for virtually all sample molecules to be eluted
out of the column. Practically, only the case when molecules are initially
retained at the top of the column is important since, unless this is the
situation, it is unnecessary to apply the molarity gradient. Retained
molecules can be characterized by the fact that By is almost equal to zero
when my, = m,,. Now, the migration of molecules on the column is possible
only when B, is not close to zero, so that the molarity of the ions in the
neighborhood of the molecular band migrating on the column should, in
general, be much higher than m,,. Practically, this means that the function
B\(m,) (Eq. 75) is important only when m, > m,, (= 0).

In the preceding section, in order to obtain the solution (Eq. 62) of Eq.
(17), Eq. (52) was considered. Equation (52) had been introduced, however,
under the tacit assumption that m;, can move in the whole range of [—, ],
so that the function B,(m,) is tacitly defined in the range [—, ®] of m,. Itis
therefore necessary here to give a definition of By(m,) when m, < 0. Thus, let
us define B,(m,) when m, < 0, for instance, as
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1

1+ ﬁre.\‘e/kTe—x'q)'m)\

B\(my) = (76)
B,(m,) is now a differential and continuous function defined in the range
[, =] of m,; B\(m,) increases monotonically with an increase of m,,
tending to 0 and 1 when m, approaches —> and <, respectively. Actually,
B,(my) = 0 when —~ < m, < m;,, however.

We now show that Eq. (62) is normalized with Eq. (73). Thus partially
differentiating Eq. (73) with respect to m,

am}\ 1
— | = ——— (77)
om ], 1+ dr(my)/dm,
is obtained, while, from Eq. (71), we have
d /d
By(my) = e (78)

1+ dr(mx)/dm)\
By using Egs. (77), (78), and (73), Eq. (62) can be rewritten as

— e-(r—s)2/4ss dr (79)
4Es

C(s, m) l::_m_] dmy =

my

which can be integrated, while keeping s constant, to give

= * 1 4=
= (r—s)2145s 3.
fx C(s, m)dm fx V/E‘_a‘e dr=1 (80)
Actually, when my < m,,, then B, = 0 (see above). This means that when m
< m,,, then B = 0 because when m,—m,, then m—m,, (see Eq. 61).
Therefore, when m < m;,, then C = O (see Eq. 3). This means that, as a
practical matter, the lower limit of the integral on the left-hand term of Eq.
(80) can be replaced with m;,. Further, when m = my, = m,,, then r = 0 (Eq.
71). This means that the lower limit of the integral on the intermediate term
of Eq. (80) can be replaced with O.

The Case of Molecules with Very Large Dimensions

From the physical meanings of the parameters x’ and x, it can be
considered that to change the value of x', while keeping the value of the
parameter

E=x/x' (81)
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constant, corresponds to considering homologous molecules with different
dimensions. We consider here an extreme case when the molecule has an
infinite value of x' and a finite value of &, or when the molecule has infinite
dimensions. In this instance, Egs. (75) and {76) reduce to

B,(my)=0 for my < m°

and (82)*
By(m,) =1 for my = m°®
where

mo —_ (egs/kTHln )X _ 1)/(0’ ~ (efe/kT — 1)/(17' (83)

With molecules initially retained on the column (see the preceding section),
the relationship

m° > my, (84)

is fulfilled. It can be considered that molecules are eluted out of any micro-
column A [see the section entitled ‘‘Microscopical Point of View:
Longitudinal Diffusion of Competing Ions, the Form of Function B(s, m),
and a Solution of Eq. (17)”] at the same molarity m° of the ions.

Now, when

my—m° + 0 (85)
Eq. (17) reduces to

#ic_c
Tom?  os

(cf. Eq. 61 and the second equation in Eq. 82). We show below that the
situations occurring when m, ¥ m° can be represented as a boundary
condition for Eq. (86). Thus let us first examine the case when my, < m°. It

can be shown that, under both the initial chromatographic condition given by
Eq. (74) and the condition of Eq. (84), the relationship

(86)

sljg}) Qs, m)= 6(m — m,)) (87)

*This equation simply shows that By increases stepwise from O to 1 with the increase of m) at
my = m°. It is only for convenience that the case of By = 1 is involved within the case where m)
takes the critical value m°.
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is fulfilled for any value of m, less than m°. Thus, due to Eq. (78) and the first
equation in Eq. (82), if my < m°, then dn{m,)/dm, = 0, whereas, by using
Eq. (73), the term my, — m in Eq. (60) can be replaced by s — r(m,). The
value of s — r(m,) is independent of the value of m, when m, < m° because
r(m,) = constant (see above). Therefore, when m, < m°, the form of the
function (s, m) (Eq. 60) is independent of the value of the parameter m,
involved in it. We now have

lim [lim Q(s, m)] = 6(m — m°) (88)
my—m°—0 —+0
On the other hand, from Eq. (62) and the first equality in Eq. (82)
lim C(s,m)=20 (89)
(s—+0)

my—m"—0

is obtained.

Let us examine the case when m, > m°. Due to the physical meaning of 2,
it can be assumed that the value of 2 changes continuously with a change in
the value of m,. This means that

mxijrxﬂgm [Sllrl}) Q(s, m)] = 8(m — m°) (90)
(see Eq. 88). On the other hand, from Eqgs. (3), (61), and the second equality
in Eq. (82),
lim Q(s,m)= Ilim C(s, m) (91)
0 my—m°+0

my—m’+
is obtained, so that we have
lim C(s, m)= 8(m — m°) (92)
s—+0
my—m°+0

Equations (89) and (92) can be rewritten into a single equation as

lir}}) C(s, m)= 8(m — m°) (93)
my—m”

Writing Eq. (93) simply as
li% C(s, m) = &(m — m°) (93"

it can be considered that Eq. (93’) gives the boundary condition for Eq. (86).
Under this condition, Eq. (86) has a solution
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1
V 4nEs

Equation (94) can also be obtained if both Eq. (85) and the second equality
in Eq. (82) are substituted into Eq. (62). It is evident that Eq. (94) fulfills Eq.
(80).

Equation (94) represents a chromatogram for molecules with very large
dimensions. In an earlier paper (/) this equation was derived by using a
different method (Eq. 45 in Ref. 1).

ef(m~m")2/435 (94)

C:

APPENDIX

The purpose of this Appendix is to derive both Egs. (43) and (67).

Let us consider a particle (or a molecule) migrating on the column at time ¢.
We assume that a linear molarity gradient of the ions is migrating at the same
time toward the bottom of the column while keeping its slope g’ constant. We
show now that, calling L' the longitudinal position of the particle on the
column, L; the position at the beginning of the gradient, m the molarity of
the ions at position L', m, the molarity of the ions at the top of the column,
and m,,, the molarity of the ions at the beginning of the gradient (see Fig. 1: cf.
p. 822), then the following relationship generally is fulfilled:

ds dL'/dLy
== (Al)
dm 1 —dL’'/dLy

where
s=mg—m=gL (A2)

(see Fig 1). L', Ly, n%, g, ands change with time #; g’ and m;, are constant.
In Fig. 1, we can find two general relationships

n’l. - m;, LQ! - L’
= - (A3)
my — m;y, L,

and

my — mi, = g'Ly’ (A4)

By substituting Eq. (A4) into Eq. (A3), and by differentiating with respect to
time 7, we obtain
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1 dm dL, dL
— = = (AS)
g dr dt  dt

which can be rearranged to

,dL’  dL’/dLy
& dm 1 -dL'/dLy
Equation (A6) gives the general relationship among L', m, and Ly'. From
Eqgs. (A6) and(A2), Eq. (Al) can be derived.

It is evident that a relationship similar to that given by Eq. (A1) is fulfilled
if we consider, instead of the migration of a particle, the migration of the
mean part (with an infinitesimal width) of the molecular band (see the section
entitled ““General Method of Finding the Fundamental Flux in Any Type of
Chromatography”). In this instance, s, m, and L' in Eq. (Al) can be
replaced by 5, 1, and L', respectively. Ly’ in Eq. (Al) can be replaced by
elution volume V because L', in general, is different from V only by a
constant value. Hence Eq. (43) can be derived.

It is also possible to consider, instead of the migration of the molecular
band on the actual column, the migration of the band with inifinitesimal width
on a microcolumn A [see the section entitled ‘“Microscopical Point of View:
Longitudinal Diffusion of Competing Ions, the Form of Function B(s, m),
and a Solution of Eq. (17)]. In this instance, s, m, L', and L’ in Eq. (Al)
can be replaced by sy, 7ity, Ly’ 6\, and (Ly'), A, respectively, thus giving Eq.
67).

(A6)

Acknowledgment

The author is grateful to Dr G. Bernardi for his interest in this work.

REFERENCES

. T. Kawasaki, Sep. Sci. Technol. 16(4), 325-364 (1981).

. T. Kawasaki, /bid., 16(5), 439-473 (1981).

3. J. C. Giddings, Dynamics of Chromatography: Part 1, Principles and Theory, Dekker,
New York, 1965, p. 1.

4. T. Kawasaki and G. Bernardi, Biopolymers, 9. 257 (1970).

. T. Kawasaki, J. Chromatogr., 161, 15 (1978).

. G. Bernardi, Unpublished Data.

N~

N

Received by editor June 3, 1980



